Sacchromyces cerevisae 2.0 – hits new milestone

Ilona SchneiderNewsKommentar schreiben

Sc2.0 project hits new milestone: 5 additional chromosomes completed!

Posted on March 9, 2017  by  kyang
The global Sc2.0 team has built five new synthetic yeast chromosomes, meaning that 30 percent of S.cerevisiae’s genetic material has now been swapped out for engineered replacements. This is one of several findings of a package of seven papers published March 10 as the cover story for Science.

An international team of more than 200 authors produced the latest work from the Synthetic Yeast Project (Sc2.0). By the end of this year, this international consortium hopes to have designed and built synthetic versions all 16 chromosomes – the structures that contain DNA – for S. cerevisiae.

Like computer programmers, scientists add swaths of synthetic DNA to – or remove stretches from – human, plant, bacterial or yeast chromosomes in hopes of averting disease, manufacturing medicines, or making food more nutritious. Yeast has long served as an important research model because their cells share many features with human cells, but are simpler and easier to study.

“This work sets the stage for completion of designer, synthetic genomes to address unmet needs in medicine and industry,” says Jef Boeke, the Sc2.0 project director.  “Beyond any one application, the papers confirm that newly created systems and software can answer basic questions about the nature of genetic machinery by reprogramming chromosomes in living cells.”

In March 2014, Sc2.0 successfully assembled the first synthetic yeast chromosome (synthetic chromosome 3 or synIII) comprising 272,871 base pairs, the chemical units that make up the DNA code. The new round of papers consists of an overview and five papers describing the first assembly of synthetic yeast chromosomes synII, synV, synVI, synX, and synXII. A seventh paper provides a first look at the 3D structures of synthetic chromosomes in the cell nucleus which mimic their native counterparts with remarkable fidelity.

Many technologies developed in Sc2.0 serve as the foundation for GP–write, a related initiative aiming to synthesize complete sets of human and plant chromosomes (genomes) in the next ten years.

S.c. 2.0

Hinterlasse eine Antwort

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind markiert *